

Multimedia Event Detection using GS-SVMs and Audio-HMMs

Nakamasa Inoue, Yusuke Kamishima, Koichi Shinoda, Department of Computer Science, Tokyo Institute of Technology Shunsuke Sato Canon Inc.

Outline

- Motivation
- System Overview
- Method
 - Features extraction
 - GS-SVM
 - Audio HMMs
- Results
 - Best result: Minimum NDC = 0.525

Motivation

- Two event feature categories:
 - Features that appear in every frame
 - Features that appear only in some frames
- Their combination can improve the detection performance.

ex.) Flash Mob Gathering clips

Some frames:

- Dancing
- Dance music
- Cheering voice

Every frame:

- Outdoor
- Dancers
- Road
- Crowd
- Crowd buzz

. . .

Method Overview

- For every-frame features: GS-SVM (GMM-Supervector Support Vector Machine)
 - Use several visual and audio features
 - Soft clustering robust against quantization errors
 - Based on our system of TRECVID 2010 SIN task
- For some-frame features: HMM (Hidden Markov model)
 - Model temporal features in sound
 - Apply word-spotting in speech recognition
 - Use only audio, not video

Feature Extraction

5 types of features, from 3 kinds of sources

List of Features

source	feature	description
Still images	SIFT (Harris)	Scale-Invariant Feature Transform with Harris-affine regions and Hessian-affine regions [Mikolajczyk, 2004]
	SIFT (Hessian)	
	HOG	32 dimensional HOG Dense sampling (every 4 pixels)
Spatio-temporal images	STIP	Space-Time Interest Points HOG and HOF features extracted [Laptev, 2005]
Audio	MFCC	Mel-frequency cepstral coefficients Audio features for speech recognition

GMM Supervector SVM (GS-SVM)

- Represent the distribution of each feature
 - Each clip is modeled by a GMM (Gaussian Mixture Model)
 - Derive a supervector from the GMM parameters
 - Train SVM (Support Vector Machine) of the supervectors

GMM Estimation

Estimated by using maximum a posteriori (MAP) adaptation for mean vectors:

$$\hat{\mu}_{k}^{(s)} = \frac{\tau \mu_{k}^{(U)} + \sum_{i=1}^{n_{s}} c_{ik} x_{i}}{\tau + C_{k}} \begin{bmatrix} \text{where} \\ c_{ik} = \frac{w_{k} \mathcal{N}(x_{i} | \mu_{k}^{(U)}, \Sigma_{k}^{(U)})}{\sum_{k=1}^{K} w_{k} \mathcal{N}(x_{i} | \mu_{k}^{(U)}, \Sigma_{k}^{(U)})}, \quad C_{k} = \sum_{i=1}^{n_{s}} c_{ik} \end{bmatrix}$$

adapted mean UBM's mean

*Universal background model (UBM): a prior GMM which is estimated by using all video data.

GMM Supervector

GMM Supervector: combination of the mean vectors.

$$\phi(X_s) = \left(\begin{array}{c} \tilde{\mu}_1^{(s)} \\ \tilde{\mu}_2^{(s)} \\ \vdots \\ \tilde{\mu}_K^{(s)} \end{array}\right) \qquad \begin{array}{c} \text{where} \\ \tilde{\mu}_k^{(s)} = \sqrt{w_k^{(U)}} (\Sigma_k^{(U)})^{-\frac{1}{2}} \hat{\mu}_k^{(s)} \\ \text{normalized mean} \end{array}$$

Score Fusion in GS-SVM

GS-SVMs use RBF-kernels:

$$k(X_{\scriptscriptstyle \mathrm{F}}, X_{\scriptscriptstyle \mathrm{F}}') = \exp\left(-\gamma \|\phi(X_{\scriptscriptstyle \mathrm{F}}) - \phi(X_{\scriptscriptstyle \mathrm{F}}')\|_2^2\right),$$

Score: Weighted Average of SVM outputs:

$$\begin{split} f(X) &= \sum_{\scriptscriptstyle \mathrm{F}} \alpha_{\scriptscriptstyle \mathrm{F}} f_{\scriptscriptstyle \mathrm{F}}(X_{\scriptscriptstyle \mathrm{F}}), \quad 0 \leq \alpha_{\scriptscriptstyle \mathrm{F}} \leq 1, \quad \sum_{\scriptscriptstyle \mathrm{F}} \alpha_{\scriptscriptstyle \mathrm{F}} = 1 \\ \text{where } \mathcal{F} &= \{\text{SIFT-Her, SIFT-Hes, HOG, STIP, MFCC}\} \end{split}$$

- $oldsymbol{lpha}_{ ext{F}}$ are decided by 2-fold cross validation based on
 - Minimum Normalized Detection Cost Run 1 & Run 2
 - Average Precision Run 3
 - In Run 4, $\alpha_{\rm F}$ is equal for all features

Audio HMM

Training:

- 1. Label an event period manually for each event clip
- 2. Train an event HMM using MFCC

Test:

- 1. Find likelihood $L_{\rm E}$ of the event period by word-spotting
- 2. Find likelihood $L_{\rm G}$ of the event period for a garbage model estimated from all video data
- 3. Calculate likelihood ratio $L_{\rm E}/L_{\rm G}$ as the detection score

Preliminary result of Audio HMMs

- Fuse HMM score with GS-SVM by weighted average.
- Audio HMMs are effective in 3 events Use them in Run1.

Experiments

- Run3 was the best. GS-SVM was effective
- Run1 (Audio-HMM) did not show good performance
- Run2, weights decided by Minimum NDC, is not good
 - Simple cross validation may have failed.

3rd among

Effect of each feature in GS-SVM

- STIP and HOG had better performance.
- MFCC was effective when combined with STIP and HOG.

Why Audio HMM did not work?

- It failed to capture temporal features
 - Each state represents a specific sound such as drum, cheering, which may appear in non-event and/or at random.
- Test data include many sounds not appear in training and development data

Difference of Minimum NDC between with and without Audio HMMs

Conclusion

- We combine GS-SVM and Audio HMM
- GS-SVMs are effective for MED.
 - STIP, HOG, and MFCC are important
- Audio HMMs are not effective
 - It cannot capture temporal features
 - Variety of sounds are larger than expected
- Future works
 - Include other features, such as Dense SIFT
 - Improve the HMM-based sound detection
 - Model event subclasses and their relationship